Estimation of Parametric Models with Conditional Heteroscedastic Errors

Christian Lavergne 1 Yann Vernaz 1
1 IS2 - Statistical Inference for Industry and Health
Inria Grenoble - Rhône-Alpes, LBBE - Laboratoire de Biométrie et Biologie Evolutive
Abstract : We consider a model with conditional heteroscedastic errors. The model requires only the form of conditional mean and conditional variance functions to be specified. We propose an effective approach for fitting this class of model. Our estimator is deduced from quasi-likelihood concept using an iterative and adaptive procedure. The convergence properties are establishe- d. Finally, our method and widely used estimators are compared via numerical experiments.
Type de document :
Rapport
[Research Report] RR-3658, INRIA. 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00073014
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 11:35:36
Dernière modification le : jeudi 28 juin 2018 - 14:38:47
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:31:22

Fichiers

Identifiants

  • HAL Id : inria-00073014, version 1

Collections

Citation

Christian Lavergne, Yann Vernaz. Estimation of Parametric Models with Conditional Heteroscedastic Errors. [Research Report] RR-3658, INRIA. 1999. 〈inria-00073014〉

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

123