A Positive MUSCL Scheme for Triangulations

Abstract : In this paper, we link together and extend some results that have previously been given about positive schemes in the approximation of compressible flows. We mainly turn here to bidimensional problems and spatially high-order schemes ( at least second-order ) of MUSCL type, defined on unstructured triangulations, for an explcit time discretization. In the case of the scalar advection equation, we derive a scheme preserving the positivity of the advected quantity. Moreover, if the advection velocity is divergence free, our scheme is LED. Then, we manage to preserve the positivity of density when solving the Euler equations and, in the multi-component case, we also preserve the maximum principle for mass fractions.
Type de document :
Rapport
RR-3465, INRIA. 1998
Liste complète des métadonnées

https://hal.inria.fr/inria-00073225
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:15:22
Dernière modification le : jeudi 11 janvier 2018 - 16:22:01
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:39:01

Fichiers

Identifiants

  • HAL Id : inria-00073225, version 1

Collections

Citation

Paul-Henry Cournède, Christophe Debiez, Alain Dervieux. A Positive MUSCL Scheme for Triangulations. RR-3465, INRIA. 1998. 〈inria-00073225〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

184