The Maximum of a Random Walk and Its Application to Rectangle Packing

Abstract : We consider a symmetric random walk of length $n$ that starts at the origin and takes steps uniformly distributed on the real interval $[-1,+1]$. We study the large-$n$ behavior of the expected maximum excursion and prove a very precise estimate. This estimate applies to the problem of packing $n$ rectangles into a unit-width strip; in particular, it makes much more precise the known upper bound on the expected minimum height when the rectangle sides are $2n$ independent uniform random draws from $[0,1]$.
Type de document :
Rapport
[Research Report] RR-3223, INRIA. 1997
Liste complète des métadonnées

https://hal.inria.fr/inria-00073466
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:55:53
Dernière modification le : vendredi 25 mai 2018 - 12:02:02
Document(s) archivé(s) le : jeudi 24 mars 2011 - 12:47:27

Fichiers

Identifiants

  • HAL Id : inria-00073466, version 1

Collections

Citation

E.G. Coffman, Philippe Flajolet, Leopold Flatto, Micha Hofri. The Maximum of a Random Walk and Its Application to Rectangle Packing. [Research Report] RR-3223, INRIA. 1997. 〈inria-00073466〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

144