Motion Planning of Legged Robots

Jean-Daniel Boissonnat 1 Olivier Devillers Sylvain Lazard
1 PRISME - Geometry, Algorithms and Robotics
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We study the problem of computing the free space \Fsimple legged robot called the spider robot. The body of this robot is a single point and the legs are attached to the body. The robot is subject to two constraints: each leg has a maximal extension $R$ (accessibility constraint) and the body of the robot must lie above the convex hull of its feet (stability constraint). Moreover, the robot can only put its feet on some regions, called the foothold regions. The free space $\calf$ is the set of positions of the body of the robot such that there exists a set of accessible footholds for which the robot is stable. We present an efficient algorithm that computes \F(n^2\log n)$ time and $O(n^2\alpha(n))$ space for point footholds where $\alpha(n)$ is an extremely slowly growing function ($\alpha(n)\leq 3$ for any practical value of $n$). We also present an algorithm to compute \Fthe foothold regions are pairwise disjoint polygons with $n$ edges in total. This algorithm computes \F(n^2\alpha_8(n)\log n)$ time using $O(n^2\alpha_8(n))$ space ($\alpha_8(n)$ is also an extremely slowly growing function). These results are close to optimal since $Ømega(n^2)$ is a lower bound for the size of~\F
Type de document :
Rapport
RR-3214, INRIA. 1997
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073475
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:57:04
Dernière modification le : samedi 27 janvier 2018 - 01:31:29
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:18:12

Fichiers

Identifiants

  • HAL Id : inria-00073475, version 1

Collections

Citation

Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Lazard. Motion Planning of Legged Robots. RR-3214, INRIA. 1997. 〈inria-00073475〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

128