How to Count Efficiently all Affine Roots of a Polynomial System

Ioannis Z. Emiris 1 Jan Verschelde
1 SAFIR - Algebraic Formal Systems for Industry and Research
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Polynomials are ubiquitous in a variety of applications. A relatively recent theory exploits their sparse structure by associating a point configuration to each polynomial system; however, it has so far mostly dealt with roots having nonzero coordinates. We shift attention to arbitrary affine roots, and improve upon the existing algorithms for counting them and computing them numerically. The one existing approach is too expensive in practice because of the usage of recursive liftings of the given point configuration. Instead, we define a single lifting which yields the desired count and defines a homotopy continuation for computing all solutions. We enhance the numerical stability of the homotopy by establishing lower bounds on the lifting values and prove that they can be derived dynamically to obtain the lowest possible values. Our construction may be regarded as a generalization of the dynamic lifting algorithm for the computation of mixed cells.
Type de document :
RR-3212, INRIA. 1997
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 12:57:20
Dernière modification le : mercredi 17 octobre 2018 - 17:02:07
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:47:41



  • HAL Id : inria-00073477, version 1



Ioannis Z. Emiris, Jan Verschelde. How to Count Efficiently all Affine Roots of a Polynomial System. RR-3212, INRIA. 1997. 〈inria-00073477〉



Consultations de la notice


Téléchargements de fichiers