Transient and Stationary Waiting Times in $(\max,+)$--Linear Systems with Poisson Input

Abstract : We consider a certain class of vectorial evolution equations, which are linear in the (max,+) semi-field. They can be used to model several types of discrete event systems, in particular stochastic service systems where we assume that the arrival process of customers (tokens, jobs, etc.) is Poisson. Under natural Cramer type conditions on certain variables, we show that the expected waiting time which the $n$-th customer has to spend in a given subarea of such a system can be expanded analytically in an infinite power series with respect to the arrival intensity $\lambda$. Furthermore, we state an algorithm for computing all coefficients of this series expansion and derive an explicit finite representation formula for the remainder term. We also give an explicit finite expansion for expected stationary waiting times in (max,+)-linear systems with deterministic service.
Type de document :
Rapport
RR-3022, INRIA. 1996
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00073671
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:27:29
Dernière modification le : jeudi 11 janvier 2018 - 16:43:54
Document(s) archivé(s) le : dimanche 4 avril 2010 - 23:54:14

Fichiers

Identifiants

  • HAL Id : inria-00073671, version 1

Collections

Citation

François Baccelli, Sven Hasenfuss, Volker Schmidt. Transient and Stationary Waiting Times in $(\max,+)$--Linear Systems with Poisson Input. RR-3022, INRIA. 1996. 〈inria-00073671〉

Partager

Métriques

Consultations de la notice

166

Téléchargements de fichiers

205