Mesh-Centered Finite Differences from Nodal Finite Elements

Abstract : After it is shown that the classical five points mesh-centered finite difference scheme can be derived from a low order nodal finite element scheme by using nonstandard quadrature formulae, higher order block mesh-centered finite difference schemes for second-order elliptic problems are derived from higher order nodal finite elements with nonstandard quadrature formulae as before, combined to a procedure known as «transverse integration». Numerical experiments with uniform and nonuniform meshes and different types of boundary conditions confirm the theoretical predictions, in discrete as well as continuous norms.
Type de document :
Rapport
[Research Report] RR-2979, INRIA. 1996
Liste complète des métadonnées

https://hal.inria.fr/inria-00073719
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 13:36:01
Dernière modification le : samedi 17 septembre 2016 - 01:27:35
Document(s) archivé(s) le : dimanche 4 avril 2010 - 21:28:25

Fichiers

Identifiants

  • HAL Id : inria-00073719, version 1

Collections

Citation

Jean-Pierre Hennart, Edmundo Del Valle. Mesh-Centered Finite Differences from Nodal Finite Elements. [Research Report] RR-2979, INRIA. 1996. 〈inria-00073719〉

Partager

Métriques

Consultations de la notice

145

Téléchargements de fichiers

86