Skip to Main content Skip to Navigation
Reports

Hamilton Cycle Decomposition of the Butterfly Network

Jean-Claude Bermond 1 Eric Darrot Olivier Delmas Stéphane Pérennes
1 SLOOP - Simulation, Object Oriented Languages and Parallelism
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : In this paper, we prove that the wrapped Butterfly graph ${\cal WBF}(d,n)$ of degree $d$ and \linebreak dimension $n$ is decomposable into Hamilton cycles. This answers a conjecture of D. Barth and \linebreak \mbox{A.~Raspaud} who solved the case $d=3D2$.
Document type :
Reports
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download

https://hal.inria.fr/inria-00073777
Contributor : Rapport de Recherche Inria <>
Submitted on : Wednesday, May 24, 2006 - 1:44:24 PM
Last modification on : Tuesday, November 17, 2020 - 11:18:04 PM
Long-term archiving on: : Sunday, April 4, 2010 - 11:58:01 PM

Identifiers

  • HAL Id : inria-00073777, version 1

Collections

Citation

Jean-Claude Bermond, Eric Darrot, Olivier Delmas, Stéphane Pérennes. Hamilton Cycle Decomposition of the Butterfly Network. RR-2920, INRIA. 1996. ⟨inria-00073777⟩

Share

Metrics

Record views

272

Files downloads

654