HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Reports

Hamilton Cycle Decomposition of the Butterfly Network

Jean-Claude Bermond 1 Eric Darrot Olivier Delmas Stéphane Pérennes
1 SLOOP - Simulation, Object Oriented Languages and Parallelism
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : In this paper, we prove that the wrapped Butterfly graph ${\cal WBF}(d,n)$ of degree $d$ and \linebreak dimension $n$ is decomposable into Hamilton cycles. This answers a conjecture of D. Barth and \linebreak \mbox{A.~Raspaud} who solved the case $d=3D2$.
Document type :
Reports
Complete list of metadata

Cited literature [10 references]  Display  Hide  Download

https://hal.inria.fr/inria-00073777
Contributor : Rapport de Recherche Inria Connect in order to contact the contributor
Submitted on : Wednesday, May 24, 2006 - 1:44:24 PM
Last modification on : Friday, February 4, 2022 - 3:09:25 AM
Long-term archiving on: : Sunday, April 4, 2010 - 11:58:01 PM

Identifiers

  • HAL Id : inria-00073777, version 1

Collections

Citation

Jean-Claude Bermond, Eric Darrot, Olivier Delmas, Stéphane Pérennes. Hamilton Cycle Decomposition of the Butterfly Network. RR-2920, INRIA. 1996. ⟨inria-00073777⟩

Share

Metrics

Record views

117

Files downloads

367