Unsupervised Parallel Image Classification Using a Hierarchical Markovian Model

Zoltan Kato 1 Josiane Zerubia Marc Berthod
1 PASTIS - Scene Analysis and Symbolic Image Processing
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This paper deals with the problem of unsupervised classification of images modeled by Markov Random Fields (MRF). If the model parameters are known then we have various methods to solve the segmentation problem (simulated annealing, ICM, etc...). However, when they are not known, the problem becomes more difficult. One has to estimate the hidden label field parameters from the only observable image. Our approach consists of extending a recent iterative method of estimation, called Iterative Conditional Estimation (ICE) to a hierarchical markovian model. The idea resembles the Estimation-Max- imization (EM) algorithm as we recursively look at the Maximum a Posteriori (MAP) estimate of the label field given the estimated parameters then we look at the Maximum Likelihood (ML) estimate of the parameters given a tentative labeling obtained at the previous step. We propose unsupervised image classification algorithms using a monogrid or a hierarchical model. The only parameter supposed to be knowm is the number of regions, all the other parameters are estimated. The presented algorithms have been implemented on a Connection Machine CM200. Comparative tests have been done on noisy synthetic and real images.
Type de document :
Rapport
RR-2528, INRIA. 1995
Liste complète des métadonnées

https://hal.inria.fr/inria-00074151
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 14:37:32
Dernière modification le : jeudi 11 janvier 2018 - 16:23:56
Document(s) archivé(s) le : jeudi 24 mars 2011 - 14:26:35

Fichiers

Identifiants

  • HAL Id : inria-00074151, version 1

Collections

Citation

Zoltan Kato, Josiane Zerubia, Marc Berthod. Unsupervised Parallel Image Classification Using a Hierarchical Markovian Model. RR-2528, INRIA. 1995. 〈inria-00074151〉

Partager

Métriques

Consultations de la notice

144

Téléchargements de fichiers

77