Approximation of the multidimensional Riemann problem in Compressible Fluid Mechanics by a Roe type method

Remi Abgrall 1
1 SINUS - Numerical Simulation for the Engineering Sciences
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We discuss the approximation of the solution of the multidimensional Riemann problem by a Roe type method. In a first part, we show that the exact solution of the problem obeys, for small times, a jump relation that generalizes exactly the one that helps to define the Roe averaged matrix in 1D. We show that the new linearization of Roe, Deconinck and Struijs does not follow this jump relation. Then, we show that there exists, in general, a solution to the problem. In a second part, we show the existence and unicity of the solution of the linearized hyperbolic Riemann problem, and, recalling the results of \citeabgrall, we give its analytic solution. Then we provide some indications on how all this can be used in a numerical scheme.
Type de document :
Rapport
[Research Report] RR-2343, INRIA. 1994
Liste complète des métadonnées

https://hal.inria.fr/inria-00074334
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 15:05:08
Dernière modification le : samedi 27 janvier 2018 - 01:31:28
Document(s) archivé(s) le : mardi 12 avril 2011 - 16:36:41

Fichiers

Identifiants

  • HAL Id : inria-00074334, version 1

Collections

Citation

Remi Abgrall. Approximation of the multidimensional Riemann problem in Compressible Fluid Mechanics by a Roe type method. [Research Report] RR-2343, INRIA. 1994. 〈inria-00074334〉

Partager

Métriques

Consultations de la notice

160

Téléchargements de fichiers

189