A markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics

Charles Kervrann 1 Fabrice Heitz 1
1 TEMIS - Advanced Image Sequence Processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, INRIA Rennes
Abstract : The general problem of unsupervised textured image segmentation remains a fundamental but not entirely solved issue in image analysis. Many studies have proven that statistical model-based texture segmentation algorithms yield good results provided that the model parameters and the number of regions be known a priori. In this paper, we present an unsupervised texture segmentation method which does not require a priori knowledge about the different texture regions, their parameters or the number of available texture classes. The proposed algorithm relies on the analysis of local and global second and higher order spatial statistics of the original images. The segmentation map is modeled using an augmented-state Markov random field, including an outlier class which enables dynamic creation of new regions during the optimization process. A bayesian estimates of this map is computed using a deterministic relaxation algorithm. The whole segmentation procedure is controlled by one single parameter. Results on mosaics of natural textures and real-world textured images show the ability of the model to yield relevant and robust segmentations when the number of regions and the different texture classes are not known a priori.
Type de document :
Rapport
[Research Report] RR-2062, INRIA. 1993
Liste complète des métadonnées

https://hal.inria.fr/inria-00074610
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 15:53:47
Dernière modification le : vendredi 16 novembre 2018 - 01:28:46
Document(s) archivé(s) le : dimanche 4 avril 2010 - 22:00:16

Fichiers

Identifiants

  • HAL Id : inria-00074610, version 1

Citation

Charles Kervrann, Fabrice Heitz. A markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics. [Research Report] RR-2062, INRIA. 1993. 〈inria-00074610〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

338