A Complete and efficient algorithm for the intersection of a general ans a convex polyhedron

Abstract : A polyhedron is any set that can be obtained from the open halfspaces by a finite number of set complement and set intersection operations. We give an efficient and complete algorithm for intersecting two three-dimensional polyhedra, one of which is convex. The algorithm is efficient in the sense that its running time is bounded by the size of the inputs plus the size of the output times a logarithmic factor. The algorithm is complete in the sense that it can handle all inputs and requires no general position assumption. We also describe a novel data structure that can represent all three-dimensional polyhedra (the set of polyhedra representable by all previous data structures is not closed under the basic boolean operations).
Type de document :
Rapport
[Research Report] RR-2023, INRIA. 1993
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00074648
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 15:59:33
Dernière modification le : mercredi 31 janvier 2018 - 10:24:04
Document(s) archivé(s) le : dimanche 4 avril 2010 - 22:21:22

Fichiers

Identifiants

  • HAL Id : inria-00074648, version 1

Collections

Citation

Katrin Dobrindt, Kurt Mehlhorn, Mariette Yvinec. A Complete and efficient algorithm for the intersection of a general ans a convex polyhedron. [Research Report] RR-2023, INRIA. 1993. 〈inria-00074648〉

Partager

Métriques

Consultations de la notice

911

Téléchargements de fichiers

815