Automated mathematical induction

Abstract : Proofs by induction are important in many computer science and artifical intelligence applications, in particular, in program verification and specification systems. We present a new method to prove (and disprove) automatically inductives properties. Given a set of axioms, a well-suited induction scheme is constructed automatically. We call such and induction scheme a test set. Then, for proving a property, we just instantiate it with terms from the test set and apply pure algebraic simplifications to the result. This method needs no completion and explicit induction. However it retains their positive features, namely, the completeness of the former and the robustness of the latter. It has been implemented in the theorem-prover SPIKE.
Type de document :
[Research Report] RR-1663, INRIA. 1992
Liste complète des métadonnées
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 16:49:28
Dernière modification le : samedi 17 septembre 2016 - 01:06:50
Document(s) archivé(s) le : mardi 12 avril 2011 - 15:58:50



  • HAL Id : inria-00074894, version 1



Adel Bouhoula, Emmanuel Kounalis, Michaël Rusinowitch. Automated mathematical induction. [Research Report] RR-1663, INRIA. 1992. 〈inria-00074894〉



Consultations de la notice


Téléchargements de fichiers