Maximum principle on the entropy and minimal limitations for kinetic schemes

Abstract : We consider kinetic schemes for the multidimensional inviscid gaz dynamics equations (compressible Euler equations). We prove that the discrete maximum principle holds for a special convex entropy. This fixes the choice of the equilibrium functions necessary for kinetic schemes. We use this property to perform a second order oscillation free scheme where only one slope limitation (for three conserved quantities in 1d) is necessary. Numerical results assert the strong convergence of the scheme.
Type de document :
Rapport
[Research Report] RR-1628, INRIA. 1992
Liste complète des métadonnées

https://hal.inria.fr/inria-00074933
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 17:00:23
Dernière modification le : vendredi 16 septembre 2016 - 15:11:43
Document(s) archivé(s) le : mardi 12 avril 2011 - 20:09:47

Fichiers

Identifiants

  • HAL Id : inria-00074933, version 1

Collections

Citation

Brahim Khobalatte, Benoît Perthame. Maximum principle on the entropy and minimal limitations for kinetic schemes. [Research Report] RR-1628, INRIA. 1992. 〈inria-00074933〉

Partager

Métriques

Consultations de la notice

318

Téléchargements de fichiers

115