A new sufficient condition for the well-posedness of non-linear least square problems arising in identification and control

Abstract : We show how simple 1-D geometrical calculations (but along all maximal segments of the parameter or control set !) can be used to establish the wellposedness of a non-linear least-square (NLLS) problem and the absence of local minima in the corresponding error function. These sufficient conditions, which are shown to be sharp by elementary examples, are based on the use of the recently developped "size x curvature" conditions for prooving that the output set is strictly quasiconvex. The use of this geometrical theory as a numerical or theoretical tool is discussed. Finally, application to regularized NLLS problem is shown to give new information on the choice of the regularizing parameter.
Type de document :
Rapport
[Research Report] RR-1121, INRIA. 1989
Liste complète des métadonnées

https://hal.inria.fr/inria-00075438
Contributeur : Rapport de Recherche Inria <>
Soumis le : mercredi 24 mai 2006 - 18:12:47
Dernière modification le : vendredi 16 septembre 2016 - 15:11:38
Document(s) archivé(s) le : mardi 12 avril 2011 - 18:57:16

Fichiers

Identifiants

  • HAL Id : inria-00075438, version 1

Collections

Citation

Guy Chavent. A new sufficient condition for the well-posedness of non-linear least square problems arising in identification and control. [Research Report] RR-1121, INRIA. 1989. 〈inria-00075438〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

63