A convex parametrization of suboptimal hinfini controllers

Abstract : A new parametrization is proposed for suboptimal H controllers of order no larger than the plant order. Here such controllers are generated from pairs of symmetric matrices (X,Y) constrained by two Riccati matrix inequalities and some positivy requirements. Interestingly, the Riccati expressions and the positivity conditions are exactly those arising in the usual state-space solution of suboptimal H problems. When working with the inverses R and S of X and Y, respectively, the constraints can be rewritten as linear matrix inequalities which define a convex parameter set. This sets up a convenient framework to handle design objectives which can be reflected in terms of (R,S). Examples of such objectives include reduced-order H design and the avoidance of pole/zero cancellation between the plant and the controller.
Type de document :
[Research Report] RR-1712, INRIA. 1992
Liste complète des métadonnées

Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 29 mai 2006 - 11:40:07
Dernière modification le : vendredi 25 mai 2018 - 12:02:05
Document(s) archivé(s) le : vendredi 13 mai 2011 - 22:11:17



  • HAL Id : inria-00076950, version 1



Pascal Gahinet. A convex parametrization of suboptimal hinfini controllers. [Research Report] RR-1712, INRIA. 1992. 〈inria-00076950〉



Consultations de la notice


Téléchargements de fichiers