Subresultants with the Bézout Matrix

Xiaorong Hou 1 Dongming Wang 2
2 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Subresultants are defined usually by means of subdeterminants of the Sylvester matrix. This paper gives an explicit and simple representation of the subresultants in terms of subdeterminants of the Bézout matrix and thus provides an alternative definition for subresultants. The representation and the lower dimensionality of the Bézout matrix lead to an effective technique for computing subresultant chains using determinant evaluation. Our preliminary experiments show that this technique is computationally superior to the standard technique based on pseudo-division for certain classes of polynomials.
Type de document :
Communication dans un congrès
X.-S. Gao & D. Wang. The Fourth Asian Symposium on Computer Mathematics, 2000, Chiang Mai, Thailand, World Scientific Publishing Co., 8, pp.19-28, 2000, Lecture Notes Series on Computing
Liste complète des métadonnées

https://hal.inria.fr/inria-00099279
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 08:52:23
Dernière modification le : mercredi 24 janvier 2018 - 10:46:02

Identifiants

  • HAL Id : inria-00099279, version 1

Collections

Citation

Xiaorong Hou, Dongming Wang. Subresultants with the Bézout Matrix. X.-S. Gao & D. Wang. The Fourth Asian Symposium on Computer Mathematics, 2000, Chiang Mai, Thailand, World Scientific Publishing Co., 8, pp.19-28, 2000, Lecture Notes Series on Computing. 〈inria-00099279〉

Partager

Métriques

Consultations de la notice

137