Algorithms for finding almost irreducible and almost primitive trinomials

Richard Brent 1 Paul Zimmermann 2
2 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Consider polynomials over $\GF(2)$. We describe efficient algorithms for finding trinomials with large irreducible (and possibly primitive) factors, and give examples of trinomials having a primitive factor of degree~$r$ for all Mersenne exponents $r = \pm 3 \mmod 8$ in the range $5 < r <10^7$, although there is no irreducible trinomial of degree~$r$. We also give trinomials with a primitive factor of degree $r = 2^k$ for $3 \le k \le 12$. These trinomials enable efficient representations of the finite field $\GF(2^r)$. We show how trinomials with large primitive factors can be used efficiently in applications where primitive trinomials would normally be used.
Type de document :
Communication dans un congrès
A. van der Poorten and A. Stein. Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, 2003, Banff, Canada, 2003
Liste complète des métadonnées

https://hal.inria.fr/inria-00099724
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 09:40:41
Dernière modification le : jeudi 11 janvier 2018 - 06:20:00

Identifiants

  • HAL Id : inria-00099724, version 1

Collections

Citation

Richard Brent, Paul Zimmermann. Algorithms for finding almost irreducible and almost primitive trinomials. A. van der Poorten and A. Stein. Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, 2003, Banff, Canada, 2003. 〈inria-00099724〉

Partager

Métriques

Consultations de la notice

103