Repairing the interpolation theorem in Quantified Modal Logic

Carlos Areces 1 Patrick Blackburn 1 Maarten Marx
1 LANGUE ET DIALOGUE - Human-machine dialogue with a significant language component
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Quantified hybrid logic is quantified modal logic extended with apparatus for naming states and asserting that a formula is true at a named state. While interpolation and Beth's definability theorem fail in a number of well known quantified modal logics (for example in quantified modal K, T, D, S4, S4.3 and S5 with constant domains), their counterparts in quantified hybrid logic have these properties. These are special cases of the main result of the paper: the quantified hybrid logic of any class of frames definable in the bounded fragment of first-order logic has the interpolation property, irrespective of whether varying, constant, expanding, or contracting domains are assumed.
Type de document :
Article dans une revue
Annals of Pure and Applied Logic, Elsevier Masson, 2003, 124 (1-2), pp.287-299
Liste complète des métadonnées

https://hal.inria.fr/inria-00099762
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 09:41:02
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48

Identifiants

  • HAL Id : inria-00099762, version 1

Collections

Citation

Carlos Areces, Patrick Blackburn, Maarten Marx. Repairing the interpolation theorem in Quantified Modal Logic. Annals of Pure and Applied Logic, Elsevier Masson, 2003, 124 (1-2), pp.287-299. 〈inria-00099762〉

Partager

Métriques

Consultations de la notice

84