Détection automatique de sons bien réalisés

Yves Laprie 1 Safaa Jarifi 1 Anne Bonneau 1 Dominique Fohr 1
1 PAROLE - Analysis, perception and recognition of speech
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Given a phonetic context, sounds can be uttered with more or less salient acoustic cues depending on the speech style and prosody. In a previous work we studied strong acoustic cues of unvoiced stops that enable a very reliable identification of stops. In this paper we use this background idea again with a view of exploiting well realized sounds to enhance speech intelligibility within the framework of language learning. We thus designed an elitist learning of HMM that make very reliable phone models emerge. The learning is iterated by feeding phones identified correctly at the previous iteration into the learning algorithm. In this way models specialize to represent well realized sounds. Experiments were carried out on the BREF 80 corpus by constructing well realized phone models for unvoiced stops. They show that these contextual models triggered off in 60% of stops occurrences with an extremely low confusion rate.
Type de document :
Communication dans un congrès
Actes des XXVes Journées d'Étude sur la Parole - JEP'2004, 2004, Fès, Maroc, 4 p, 2004
Liste complète des métadonnées

https://hal.inria.fr/inria-00099895
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 10:04:31
Dernière modification le : jeudi 11 janvier 2018 - 06:19:57
Document(s) archivé(s) le : mercredi 29 mars 2017 - 12:46:40

Fichiers

Identifiants

  • HAL Id : inria-00099895, version 1

Collections

Citation

Yves Laprie, Safaa Jarifi, Anne Bonneau, Dominique Fohr. Détection automatique de sons bien réalisés. Actes des XXVes Journées d'Étude sur la Parole - JEP'2004, 2004, Fès, Maroc, 4 p, 2004. 〈inria-00099895〉

Partager

Métriques

Consultations de la notice

270

Téléchargements de fichiers

36