FPNA: concepts and properties

Bernard Girau 1
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graph of standard neural models can not be handled by digital hardware devices. Though programmable digital hardware now stand as a real opportunity for flexible hardware implementations of neural networks, many area and topology problems arise when standard neural models are implemented onto programmable circuits such as FPGAs, so that the fast FPGA technology improvements can not be fully exploited. The theoretical and practical framework first introduced in [Girau, 1999] reconciles simple hardware topologies with complex neural architectures, thanks to some configurable hardware principles applied to neural computation: Field Programmable Neural Arrays (FPNA) lead to powerful neural architectures that are easy to map onto FPGAs, by means of a simplified topology and an original data exchange scheme. This two-chapter study (1- concepts and properties, 2- applications and implementations) gathers the different results that have been published about the FPNA concept, as well as some unpublished ones. This first part focuses on definitions and theoretical aspects. Starting from a general two-level definition of FPNAs, all proposed computation schemes are together described and compared. Their correctness and partial equivalence is justified. The computational power of FPNA-based neural networks is characterized through the concept of underparameterized convolutions.
Type de document :
Chapitre d'ouvrage
Amos Omondi, Jagath Rajapakse. FPGA Implementations of Neural Networks, Kluwer Academic Publishers, pp.1-42, 2004
Liste complète des métadonnées

https://hal.inria.fr/inria-00100072
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 10:13:52
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48

Identifiants

  • HAL Id : inria-00100072, version 1

Collections

Citation

Bernard Girau. FPNA: concepts and properties. Amos Omondi, Jagath Rajapakse. FPGA Implementations of Neural Networks, Kluwer Academic Publishers, pp.1-42, 2004. 〈inria-00100072〉

Partager

Métriques

Consultations de la notice

373