Improving Coordination with Communication in Multiagent Reinforcement Learning

Daniel Szer 1 François Charpillet 1
1 MAIA - Autonomous intelligent machine
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In the following paper we present a new algorithm for cooperative reinforcement learning in multiagent systems. We consider autonomous and independently learning agents, and we seek to obtain an optimal solution for the team as a whole while keeping the learning as much decentralized as possible. Coordination between agents occurs through communication, namely the mutual notification algorithm. We define the learning problem as a decentralized process, using the MDP formalism. We then give an optimality criterion and prove the convergence of the algorithm for deterministic environments. We introduce variable and hierarchical communication strategies which considerably reduce the number of communications. Finally we study the convergence properties and communication overhead on a small example.
Type de document :
Communication dans un congrès
16th IEEE International Conference on Tools with Artificial Intelligence - ICTAI'04, 2004, Boca Raton, USA, 5 p, 2004
Liste complète des métadonnées

https://hal.inria.fr/inria-00100165
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 10:14:58
Dernière modification le : jeudi 11 janvier 2018 - 06:19:50

Identifiants

  • HAL Id : inria-00100165, version 1

Collections

Citation

Daniel Szer, François Charpillet. Improving Coordination with Communication in Multiagent Reinforcement Learning. 16th IEEE International Conference on Tools with Artificial Intelligence - ICTAI'04, 2004, Boca Raton, USA, 5 p, 2004. 〈inria-00100165〉

Partager

Métriques

Consultations de la notice

272