Bull-Reducible Berge Graphs are Perfect

Hazel Everett 1 Celina De Figueiredo Sulamita Klein Bruce Reed
1 ISA - Models, algorithms and geometry for computer graphics and vision
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Berge's well known SPGC (Strong Perfect Graph Conjecture) states that the class of perfect graphs coincides with the class of graphs containing no induced odd cycle of length at least 5 or the complement of such a cycle. A graph in this second class is called Berge. A bull is a graph with five vertices x, a, b, c, d and five edges xa, xb, ab, ad, bc. A graph is bull-reducible if no vertex is in two bulls. We prove that every bull-reducible Berge graph is perfect and we exhibit a polynomial-time recognition algorithm for bull-reducible Berge graphs.
Type de document :
Communication dans un congrès
Euroconference on Combinatorics, Graph Theory and Applications - COMB'01, 2001, Barcelone, Spain, 3 p, 2001
Liste complète des métadonnées

https://hal.inria.fr/inria-00100577
Contributeur : Publications Loria <>
Soumis le : mardi 26 septembre 2006 - 14:47:48
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48

Identifiants

  • HAL Id : inria-00100577, version 1

Collections

Citation

Hazel Everett, Celina De Figueiredo, Sulamita Klein, Bruce Reed. Bull-Reducible Berge Graphs are Perfect. Euroconference on Combinatorics, Graph Theory and Applications - COMB'01, 2001, Barcelone, Spain, 3 p, 2001. 〈inria-00100577〉

Partager

Métriques

Consultations de la notice

141