A Note on Reconfiguring Tree Linkages: Trees can Lock

Abstract : It has recently been shown that any polygonal chain in the plane can be reconfigured to lie on a straight line, and any polygon can be reconfigured to be convex. This result cannot be extended to tree linkages: we show that there are trees with two configurations that are not connected by a motion. Indeed, we prove that an $N$-link tree can have $2^{Omega(N)}$ equivalence classes of configurations.
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2002, 117 (1-3), pp.293-297. 〈10.1016/S0166-218X(01)00229-3〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00100889
Contributeur : Sylvain Lazard <>
Soumis le : mardi 26 septembre 2006 - 14:52:42
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48

Lien texte intégral

Identifiants

Collections

Citation

Thérèse Biedl, Erik Demaine, Martin Demaine, Sylvain Lazard, Anna Lubiw, et al.. A Note on Reconfiguring Tree Linkages: Trees can Lock. Discrete Applied Mathematics, Elsevier, 2002, 117 (1-3), pp.293-297. 〈10.1016/S0166-218X(01)00229-3〉. 〈inria-00100889〉

Partager

Métriques

Consultations de la notice

163