Skip to Main content Skip to Navigation
Reports

Error analysis for an arbitrary precision in computing zeta(s) with the Cohen-Olivier algorithm : complete description of the real case and preliminary report on the general case

Yves Pétermann 1 Jean-Luc Rémy 2
1 SPACES - Solving problems through algebraic computation and efficient software
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 ADAGE - Applying discrete algorithms to genomics
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Résumé : We provide a complete error analysis of the Cohen-Olivier algorithm, computing zeta(s), when the argument is real ; we indicate some further complexities which occur when the argument is complex. || Nous fournissons une analyse d'erreur complète dans le cas de l'algorithme de Cohen-Olivier, pour calculer zeta(s), lorsque l'argument est réel. Nous donnons quelques indications des difficultés qui s'introduisent lorsque l'argument est réel.
Document type :
Reports
Complete list of metadata

https://hal.inria.fr/inria-00101072
Contributor : Publications Loria <>
Submitted on : Tuesday, September 26, 2006 - 2:55:48 PM
Last modification on : Friday, February 26, 2021 - 3:28:06 PM

Identifiers

  • HAL Id : inria-00101072, version 1

Collections

Citation

Yves Pétermann, Jean-Luc Rémy. Error analysis for an arbitrary precision in computing zeta(s) with the Cohen-Olivier algorithm : complete description of the real case and preliminary report on the general case. [Intern report] A02-R-386 || petermann02a, 2002. ⟨inria-00101072⟩

Share

Metrics

Record views

85