Classification System Optimization with Multi-Objective Genetic Algorithms

Abstract : This paper discusses a two-level approach to optimize classification systems with multi-objective genetic algorithms. The first level creates a set of representations through feature extraction, which is used to train a classifier set. At this point, the most performing classifier can be selected for a single classifier system, or an ensemble of classifiers can be optimized for improved accuracy. Two zoning strategies for feature extraction are discussed and compared using global validation to select optimized solutions. Experiments conducted with isolated handwritten digits and uppercase letters demonstrate the effectiveness of this approach, which encourages further research in this direction.
Type de document :
Communication dans un congrès
Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule (France), Suvisoft, 2006
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00104200
Contributeur : Anne Jaigu <>
Soumis le : vendredi 6 octobre 2006 - 09:39:56
Dernière modification le : vendredi 6 octobre 2006 - 10:00:42
Document(s) archivé(s) le : mardi 6 avril 2010 - 18:40:54

Identifiants

  • HAL Id : inria-00104200, version 1

Collections

Citation

Paulo V. W. Radtke, Robert Sabourin, Tony Wong. Classification System Optimization with Multi-Objective Genetic Algorithms. Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule (France), Suvisoft, 2006. 〈inria-00104200〉

Partager

Métriques

Consultations de la notice

111

Téléchargements de fichiers

213