Laplace-Beltrami Eigenfunctions Towards an algorithm that " understands " geometry

Bruno Lévy 1
1 ALICE - Geometry and Lighting
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : One of the challenges in geometry processing is to automatically reconstruct a higher-level representation from raw geometric data. For instance, computing a parameter-ization of an object helps attaching information to it and converting between various representations. More generally , this family of problems may be thought of in terms of constructing structured function bases attached to surfaces. In this paper, we study a specific type of hierarchical function bases, defined by the eigenfunctions of the Laplace-Beltrami operator. When applied to a sphere, this function basis corresponds to the classical spherical harmonics. On more general objects, this defines a function basis well adapted to the geometry and the topology of the object. Based on physical analogies (vibration modes), we first give an intuitive view before explaining the underlying theory. We then explain in practice how to compute an approximation of the eigenfunctions of a differential operator, and show possible applications in geometry processing.
Type de document :
Communication dans un congrès
IEEE International Conference on Shape Modeling and Applications - SMI 2006, Jun 2006, Matsushima, Japan. IEEE, pp.13, 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06). 〈10.1109/SMI.2006.21〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00105566
Contributeur : Nicolas Ray <>
Soumis le : jeudi 22 septembre 2016 - 14:27:11
Dernière modification le : jeudi 11 janvier 2018 - 06:20:18

Fichier

SMI_Laplacian.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Relations

Citation

Bruno Lévy. Laplace-Beltrami Eigenfunctions Towards an algorithm that " understands " geometry. IEEE International Conference on Shape Modeling and Applications - SMI 2006, Jun 2006, Matsushima, Japan. IEEE, pp.13, 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06). 〈10.1109/SMI.2006.21〉. 〈inria-00105566〉

Partager

Métriques

Consultations de la notice

492

Téléchargements de fichiers

280