Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces

Wan Chiu Li 1 Bruno Vallet 1 Nicolas Ray 1 Bruno Lévy 1
1 ALICE - Geometry and Lighting
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Accurately representing higher-order singularities of vector fields defined on piecewise linear surfaces is a non-trivial problem. In this work, we introduce a concise yet complete interpolation scheme of vector fields on arbitrary triangulated surfaces. The scheme enables arbitrary singularities to be represented at vertices The representation can be considered as a facet-based "encoding" of vector fields on piecewise linear surfaces. The vector field is described in polar coordinates over each facet, with a facet edge being chosen as the reference to define the angle. An integer called the period jump is associated to each edge of the triangulation to remove the ambiguity when interpolating the direction of the vector field between two facets that share an edge. To interpolate the vector field, we first linearly interpolate the angle of rotation of the vectors along the edges of the facet graph. Then, we use a variant of Nielson's side-vertex scheme to interpolate the vector field over the entire surface. With our representation, we remove the bound imposed on the complexity of singularities that a vertex can represent by its connectivity. This bound is a limitation generally exists in vertex-based linear schemes. Furthermore, using our data structure, the index of a vertex of a vector field can be combinatorily determined. We show the simplicity of the interpolation scheme with a GPU-accelerated algorithm for a LIC-based visualization of the so-defined vector fields, operating in image space. We demonstrate the algorithm applied to various vector fields on curved surfaces.
Type de document :
Communication dans un congrès
IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization '06), Oct 2006, USA, 2006
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00105598
Contributeur : Nicolas Ray <>
Soumis le : mercredi 11 octobre 2006 - 16:08:22
Dernière modification le : jeudi 11 janvier 2018 - 06:20:18
Document(s) archivé(s) le : mardi 6 avril 2010 - 19:24:08

Fichier

Identifiants

  • HAL Id : inria-00105598, version 1

Collections

Citation

Wan Chiu Li, Bruno Vallet, Nicolas Ray, Bruno Lévy. Representing Higher-Order Singularities in Vector Fields on Piecewise Linear Surfaces. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization '06), Oct 2006, USA, 2006. 〈inria-00105598〉

Partager

Métriques

Consultations de la notice

243

Téléchargements de fichiers

276