A quasi-Monte Carlo method for computing areas of point-sampled surfaces

Yu-Shen Liu 1 Jun-Hai Yong 1 Hui Zhang 1 Dong-Ming Yan 1 Jia-Guang Sun 1
1 CAD - Computer Aided Design
LIAMA - Laboratoire Franco-Chinois d'Informatique, d'Automatique et de Mathématiques Appliquées, Inria Paris-Rocquencourt
Abstract : A novel and efficient quasi-Monte Carlo method for computing the area of a point-sampled surface with associated surface normal for each point is presented. Our method operates directly on the point cloud without any surface reconstruction procedure. Using the Cauchy–Crofton formula, the area of the point-sampled surface is calculated by counting the number of intersection points between the point cloud and a set of uniformly distributed lines generated with low-discrepancy sequences. Based on a clustering technique, we also propose an effective algorithm for computing the intersection points of a line with the point-sampled surface. By testing on a number of point-based models, experiments suggest that our method is more robust and more efficient than those conventional approaches based on surface reconstruction.
Type de document :
Article dans une revue
Computer-Aided Design, Elsevier, 2006, Computer-Aided Design, 38 (1), pp.55-68. 〈10.1016/j.cad.2005.07.002〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00124273
Contributeur : Chine Publications Liama <>
Soumis le : vendredi 12 janvier 2007 - 17:20:11
Dernière modification le : vendredi 25 mai 2018 - 12:02:04

Lien texte intégral

Identifiants

Collections

Citation

Yu-Shen Liu, Jun-Hai Yong, Hui Zhang, Dong-Ming Yan, Jia-Guang Sun. A quasi-Monte Carlo method for computing areas of point-sampled surfaces. Computer-Aided Design, Elsevier, 2006, Computer-Aided Design, 38 (1), pp.55-68. 〈10.1016/j.cad.2005.07.002〉. 〈inria-00124273〉

Partager

Métriques

Consultations de la notice

99