Isolated points, duality and residues

Bernard Mourrain 1
1 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : In this paper, we are interested in the use of duality in effective computations on polynomials. We represent the elements of the dual of the algebra R of polynomials over the field K as formal series in K[[d]] in differential operators. We use the correspondence between ideals of R and vector spaces of K[[d]], stable by derivation and closed for the (d)-adic topology, in order to construct the local inverse system of an isolated point. We propose an algorithm, which computes the orthogonal D of the primary component of this isolated point, by integration of polynomials in the dual space K[d], with good complexity bounds. Then we apply this algorithm to the computation of local residues, the analysis of real branches of a locally complete intersection curve, the computation of resultants of homogeneous polynomials.
Type de document :
Article dans une revue
J. of Pure and Applied Algebra, Elsevier, 1996, 117&118, pp.469--493
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger
Contributeur : Bernard Mourrain <>
Soumis le : jeudi 18 janvier 2007 - 17:56:32
Dernière modification le : jeudi 11 janvier 2018 - 16:14:53
Document(s) archivé(s) le : mardi 6 avril 2010 - 22:16:04


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00125278, version 1



Bernard Mourrain. Isolated points, duality and residues. J. of Pure and Applied Algebra, Elsevier, 1996, 117&118, pp.469--493. 〈inria-00125278〉



Consultations de la notice


Téléchargements de fichiers