Pythagore's Dilemma, Symbolic-Numeric Computation, and the Border Basis Method

Bernard Mourrain 1
1 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : In this tutorial paper, we first discuss the motivation of doing symbolic-numeric computation, with the aim of developing efficient and certified polynomial solvers. We give a quick overview of fundamental algebraic properties, used to recover the roots of a polynomial system, when we know the multiplicative structure of its quotient algebra. Then, we describe the border basis method, justifying and illustrating the approach on several simple examples. In particular, we show its usefulness in the context of solving polynomial systems, with approximate coefficients. The main results are recalled and we prove a new result on the syzygies, naturally associated with commutation properties. Finally, we describe an algorithm and its implementation for computing such border bases.
Type de document :
Chapitre d'ouvrage
Dongming Wang and Lihong Zhi. Symbolic-Numeric Computation, Birkhauser, pp.223--243, 2007, Trends in Mathematics
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00137424
Contributeur : Bernard Mourrain <>
Soumis le : lundi 19 mars 2007 - 17:19:49
Dernière modification le : jeudi 11 janvier 2018 - 16:04:53
Document(s) archivé(s) le : vendredi 21 septembre 2012 - 13:06:31

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00137424, version 1

Collections

Citation

Bernard Mourrain. Pythagore's Dilemma, Symbolic-Numeric Computation, and the Border Basis Method. Dongming Wang and Lihong Zhi. Symbolic-Numeric Computation, Birkhauser, pp.223--243, 2007, Trends in Mathematics. 〈inria-00137424〉

Partager

Métriques

Consultations de la notice

275

Téléchargements de fichiers

143