Computing the Union of 3-Colored Triangles - Archive ouverte HAL Access content directly
Journal Articles International Journal of Computational Geometry and Applications Year : 1991

Computing the Union of 3-Colored Triangles

(1) , (1) , (2)
1
2

Abstract

Given is a set \s\ of $n$ points, each colored with one of $k \geq 3$ colours. We say that a triangle defined by three points of \s\ is 3-colored if its vertices have distinct colours. We prove in this paper that the problem of constructing the boundary of the union \ts\ of all such 3-colored triangles can be done in optimal $O(n \log n)$ time.
Fichier principal
Vignette du fichier
hal.pdf (134.78 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00167176 , version 1 (16-08-2007)

Identifiers

Cite

Jean-Daniel Boissonnat, Olivier Devillers, Franco P. Preparata. Computing the Union of 3-Colored Triangles. International Journal of Computational Geometry and Applications, 1991, 1 (2), pp.187-196. ⟨10.1142/S021819599100013X⟩. ⟨inria-00167176⟩
67 View
170 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More