Further Results on Arithmetic Filters for Geometric Predicates

Abstract : An efficient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of filters. The predicate is first evaluated using rounding computations, and an error estimation gives a certificate of the validity of the result. In this note, we studies the statistical efficiency of filters for cosphericity predicate with an assumption of regular distribution of the points. We prove that the expected value of the polynomial corresponding to the in sphere test is greater than epsilon with probability O(epsilon log 1/epsilon) improving the results of a previous paper.
Type de document :
Article dans une revue
Computational Geometry, Elsevier, 1999, 13, pp.141-148. 〈10.1016/S0925-7721(99)00011-5〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00168163
Contributeur : Olivier Devillers <>
Soumis le : vendredi 24 août 2007 - 17:42:10
Dernière modification le : mercredi 7 mars 2018 - 10:10:56
Document(s) archivé(s) le : vendredi 9 avril 2010 - 01:07:29

Fichier

comgeo350.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Devillers, Franco Preparata. Further Results on Arithmetic Filters for Geometric Predicates. Computational Geometry, Elsevier, 1999, 13, pp.141-148. 〈10.1016/S0925-7721(99)00011-5〉. 〈inria-00168163〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

117