Further Results on Arithmetic Filters for Geometric Predicates

Abstract : An efficient technique to solve precision problems consists in using exact computations. For geometric predicates, using systematically expensive exact computations can be avoided by the use of filters. The predicate is first evaluated using rounding computations, and an error estimation gives a certificate of the validity of the result. In this note, we studies the statistical efficiency of filters for cosphericity predicate with an assumption of regular distribution of the points. We prove that the expected value of the polynomial corresponding to the in sphere test is greater than epsilon with probability O(epsilon log 1/epsilon) improving the results of a previous paper.
Type de document :
Article dans une revue
Computational Geometry, Elsevier, 1999, 13, pp.141-148
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

Contributeur : Olivier Devillers <>
Soumis le : vendredi 24 août 2007 - 17:42:10
Dernière modification le : jeudi 11 janvier 2018 - 16:57:39
Document(s) archivé(s) le : vendredi 9 avril 2010 - 01:07:29


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00168163, version 1



Olivier Devillers, Franco Preparata. Further Results on Arithmetic Filters for Geometric Predicates. Computational Geometry, Elsevier, 1999, 13, pp.141-148. 〈inria-00168163〉



Consultations de la notice


Téléchargements de fichiers