Toward Behavioral Modeling of a Grid System: Mining the Logging and Bookkeeping files

Xiangliang Zhang 1 Michèle Sebag 1 Cecile Germain-Renaud 1
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
Abstract : Grid systems are complex heterogeneous systems, and their modeling constitutes a highly challenging goal. This paper is interested in modeling the jobs handled by the EGEE grid, by mining the Logging and Bookkeeping files. The goal is to discover meaningful job clusters, going beyond the coarse categories of ”successfully terminated jobs” and ”other jobs”. The presented approach is a threestep process: i) Data slicing is used to alleviate the job heterogeneity and afford discriminant learning; ii) Constructive induction proceeds by learning discriminant hypotheses from each data slice; iii) Finally, double clustering is used on the representation built by constructive induction; the clusters are fully validated after the stability criteria proposed by Meila (2006). Lastly, the job clusters are submitted to the experts and some meaningful interpretations are found
Type de document :
Communication dans un congrès
DSMM07, Oct 2007, Omaha, United States. 2007
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger
Contributeur : Cecile Germain <>
Soumis le : samedi 22 septembre 2007 - 23:08:05
Dernière modification le : mercredi 28 novembre 2018 - 15:36:02
Document(s) archivé(s) le : lundi 24 septembre 2012 - 12:45:18


Fichiers éditeurs autorisés sur une archive ouverte


  • HAL Id : inria-00174285, version 1



Xiangliang Zhang, Michèle Sebag, Cecile Germain-Renaud. Toward Behavioral Modeling of a Grid System: Mining the Logging and Bookkeeping files. DSMM07, Oct 2007, Omaha, United States. 2007. 〈inria-00174285〉



Consultations de la notice


Téléchargements de fichiers