Modelling Smooth Paths Using Gaussian Processes - Archive ouverte HAL Access content directly
Conference Papers Year : 2007

Modelling Smooth Paths Using Gaussian Processes

(1) , (1)
1

Abstract

A generative model based on the gaussian mixture model and gaussian processes is presented in this paper. Typical motion paths are learnt and then used for motion prediction using this model. The principal novel aspect of this approach is the modelling of paths using gaussian processes. It allows the representation of smooth trajectories and avoids discretization problems found in most existing methods. Gaussian processes not only provides a comprehensive and formal theoretical framework to work with, it also lends itself naturally to path clustering using gaussian mixture models. Learning is performed using expectation maximization where the E-Step uses variational methods to maximize its lower bound before optimization over parameters are performed in the M-Step.

Keywords

Fichier principal
Vignette du fichier
Paper.pdf (951.91 Ko) Télécharger le fichier
Vignette du fichier
frame.jpg (263.66 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Other

Dates and versions

inria-00181664 , version 1 (24-10-2007)

Identifiers

  • HAL Id : inria-00181664 , version 1

Cite

Christopher Tay, Christian Laugier. Modelling Smooth Paths Using Gaussian Processes. Proc. of the Int. Conf. on Field and Service Robotics, 2007, Chamonix, France. ⟨inria-00181664⟩
2765 View
1842 Download

Share

Gmail Facebook Twitter LinkedIn More