Occupancy grids from stereo and optical flow data

Christophe Braillon 1 Cédric Pradalier 1 Kane Usher 1 Jim Crowley 1 Christian Laugier 1
1 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : In this paper, we propose a real-time method to detect obstacles using theoretical models of the ground plane, first in a 3D point cloud given by a stereo camera, and then in an optical flow field given by one of the stereo pair's camera. The idea of our method is to combine two partial occupancy grids from both sensor modalities with an occupancy grid framework. The two methods do not have the same range, precision and resolution. For example, the stereo method is precise for close objects but cannot see further than 7 m (with our lenses), while the optical flow method can see considerably further but has lower accuracy. Experiments that have been carried on the CyCab mobile robot and on a tractor demonstrate that we can combine the advantages of both algorithms to build local occupancy grids from incomplete data (optical flow from a monocular camera cannot give depth information without time integration).
Type de document :
Communication dans un congrès
Proc. of the Int. Symp. on Experimental Robotics, Jul 2006, Rio de Janeiro (BR), France. 2006
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

Contributeur : Christian Laugier <>
Soumis le : mercredi 24 octobre 2007 - 18:26:36
Dernière modification le : jeudi 3 janvier 2019 - 11:06:03
Document(s) archivé(s) le : lundi 24 septembre 2012 - 14:35:41


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00182020, version 1




Christophe Braillon, Cédric Pradalier, Kane Usher, Jim Crowley, Christian Laugier. Occupancy grids from stereo and optical flow data. Proc. of the Int. Symp. on Experimental Robotics, Jul 2006, Rio de Janeiro (BR), France. 2006. 〈inria-00182020〉



Consultations de la notice


Téléchargements de fichiers