Tradeoffs in SLAM with sparse information filters

Abstract : Designing filters exploiting the sparseness of the information matrix for effciently solving the simultaneous localization and mapping (SLAM) problem has attracted significant attention during the recent past. The main contribution of this paper is a review of the various sparse information filters proposed in the literature to date, in particular, the compromises used to achieve sparseness. Two of the most recent algorithms that the authors have implemented, Exactly Sparse Extended Information Filter (ESEIF) by Walter et al. [5] and the D-SLAM by Wang et al. [6] are discussed and analyzed in detail. It is proposed that this analysis can stimulate developing a framework suitable for evaluating the relative merits of SLAM algorithms.
Type de document :
Communication dans un congrès
6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00195911
Contributeur : Inria Rhône-Alpes Documentation <>
Soumis le : mardi 11 décembre 2007 - 16:37:43
Dernière modification le : mardi 11 décembre 2007 - 17:34:34
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 11:16:37

Fichier

fsr_51.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00195911, version 1

Collections

Citation

Zhan Wang, Shoudong Huang, Gamini Dissanayake. Tradeoffs in SLAM with sparse information filters. 6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics. 〈inria-00195911〉

Partager

Métriques

Consultations de la notice

64

Téléchargements de fichiers

100