Robust Vision-based Underwater Target Identification & Homing Using Self-Similar Landmarks

Abstract : Next generation Autonomous Underwater Vehicles (AUVs) will be required to robustly identify underwater targets for tasks such as inspection, localisation and docking. Given their often unstructured operating environments, vision offers enormous potential in underwater navigation over more traditional methods, however, reliable target segmentation often plagues these systems. This paper addresses robust vision-based target recognition by presenting a novel scale and rotationally invariant target design and recognition routine based on Self-Similar Landmarks (SSL) that enables robust target pose estimation with respect to a single camera. These algorithms are applied to an AUV with controllers developed for vision-based docking with the target. Experimental results show that system performs exceptionally on limited processing power and demonstrates how the combined vision and controller systems enables robust target identification and docking in a variety of operating conditions.
Type de document :
Communication dans un congrès
Field And Service Robotics, Jul 2007, Chamonix, France. 2007
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00211881
Contributeur : Amaury Nègre <>
Soumis le : mardi 22 janvier 2008 - 10:33:00
Dernière modification le : mercredi 11 avril 2018 - 01:56:04
Document(s) archivé(s) le : jeudi 15 avril 2010 - 01:56:52

Fichier

SSL_SB_FSR07.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00211881, version 1

Collections

Citation

Amaury Nègre, Cédric Pradalier, Matthew Dunbabin. Robust Vision-based Underwater Target Identification & Homing Using Self-Similar Landmarks. Field And Service Robotics, Jul 2007, Chamonix, France. 2007. 〈inria-00211881〉

Partager

Métriques

Consultations de la notice

327

Téléchargements de fichiers

236