Web Page Rank Prediction with Markov Models - Archive ouverte HAL Access content directly
Conference Papers Year : 2008

Web Page Rank Prediction with Markov Models

(1) , (1) , (2) , (1)


In this paper we propose a method for predicting the ranking position of a Web page. Assuming a set of successive past top-k rankings, we study the evolution of Web pages in terms of ranking trend sequences used for Markov Models training, which are in turn used to predict future rankings. The predictions are highly accurate for all experimental setups and similarity measures.
Fichier principal
Vignette du fichier
vazirgiannis2008web.pdf (112.62 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

inria-00260431 , version 1 (04-03-2008)


  • HAL Id : inria-00260431 , version 1


Michalis Vazirgiannis, Dimitris Drosos, Pierre Senellart, Akrivi Vlachou. Web Page Rank Prediction with Markov Models. WWW, Apr 2008, Beijing, China. ⟨inria-00260431⟩
162 View
1194 Download


Gmail Facebook Twitter LinkedIn More