Combinatorial Optimization of Stochastic Multi-objective Problems: an Application to the Flow-shop Scheduling Problem

Abstract : The importance of multi-objective optimization is globably stablished nowadays. Furthermore, a great part of real-world problems are subject to uncertainties due to, e.g., noisy or approximated fitness function(s), varying parameters or dynamic environments. Moreover, although evolutionary algorithms are commonly used to solve multi-objective problems on the one hand and to solve stochastic problems on the other hand, very few approaches combine simultaneously these two aspects. Thus, flow-shop scheduling problems are generally studied in a single-objective deterministic way whereas they are, by nature, multi-objective and are subjected to a wide range of uncertainties. However, these two features have never been investigated at the same time. In this paper, we present and adopt a proactive stochastic approach where processing times are represented by random variables. Then, we propose several multi-objective methods that are able to handle any type of probability distribution. Finally, we experiment these methods on a stochastic bi-objective flow-shop problem.
Type de document :
Communication dans un congrès
S. Obayashi et al. Evolutionary Multi-criterion Optimization (EMO 2007), Feb 2007, Matsushima, Japan. Springer-Verlag, 4403, pp.457--471, 2007, Lecture Notes in Computer Science (LNCS). 〈10.1007/978-3-540-70928-2_36〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00269974
Contributeur : Arnaud Liefooghe <>
Soumis le : jeudi 3 avril 2008 - 13:43:01
Dernière modification le : vendredi 28 septembre 2018 - 16:18:07
Document(s) archivé(s) le : jeudi 20 mai 2010 - 22:54:47

Fichier

074.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Arnaud Liefooghe, Matthieu Basseur, Laetitia Jourdan, El-Ghazali Talbi. Combinatorial Optimization of Stochastic Multi-objective Problems: an Application to the Flow-shop Scheduling Problem. S. Obayashi et al. Evolutionary Multi-criterion Optimization (EMO 2007), Feb 2007, Matsushima, Japan. Springer-Verlag, 4403, pp.457--471, 2007, Lecture Notes in Computer Science (LNCS). 〈10.1007/978-3-540-70928-2_36〉. 〈inria-00269974〉

Partager

Métriques

Consultations de la notice

344

Téléchargements de fichiers

219