Look-ahead Proposals for Robust Grid-based SLAM

Abstract : Simultaneous Localization and Mapping (SLAM) is one of the classical problems in mobile robotics. The task is to build a map of the environment using on-board sensors while at the same time localizing the robot relative to this map. Rao-Blackwellized particle filters have emerged as a powerful technique for solving the SLAM problem in a wide variety of environments. It is a well-known fact for sampling-based approaches that the choice of the proposal distribution greatly influences the robustness and efficiency achievable by the algorithm. In this paper, we present a significantly improved proposal distribution for grid-based SLAM, which utilizes whole sequences of sensor measurements rather than only the most recent one. We have implemented our system on a real robot and evaluated its performance on standard data sets as well as in hard outdoor settings with few and ambiguous features. Our approach improves the localization accuracy and the map quality. At the same time, it substantially reduces the risk of mapping failures.
Type de document :
Communication dans un congrès
6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00275573
Contributeur : Inria Rhône-Alpes Documentation <>
Soumis le : jeudi 24 avril 2008 - 14:40:34
Dernière modification le : jeudi 24 avril 2008 - 15:02:01
Document(s) archivé(s) le : vendredi 28 mai 2010 - 17:29:50

Fichier

fsr_30.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00275573, version 1

Collections

Citation

Slawomir Grzonka, Christian Plagemann, Giorgio Grisetti, Wolfram Burgard. Look-ahead Proposals for Robust Grid-based SLAM. 6th International Conference on Field and Service Robotics - FSR 2007, Jul 2007, Chamonix, France. Springer, 42, 2007, Springer Tracts in Advanced Robotics. 〈inria-00275573〉

Partager

Métriques

Consultations de la notice

176

Téléchargements de fichiers

164