Spherical Demons: Fast Surface Registration

Abstract : We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast -- registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.
Type de document :
Communication dans un congrès
Medical Image Computing and Computer Assisted Intervention, Sep 2008, New York, United States. Springer-Verlag, 2008
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00287048
Contributeur : Tom Vercauteren <>
Soumis le : mardi 10 juin 2008 - 16:19:33
Dernière modification le : jeudi 11 janvier 2018 - 16:20:47
Document(s) archivé(s) le : vendredi 28 mai 2010 - 18:33:46

Fichier

SphericalDemons-MICCAI08-Yeo.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00287048, version 1

Collections

Citation

B.T. Thomas Yeo, Mert Sabuncu, Tom Vercauteren, Nicholas Ayache, Bruce Fischl, et al.. Spherical Demons: Fast Surface Registration. Medical Image Computing and Computer Assisted Intervention, Sep 2008, New York, United States. Springer-Verlag, 2008. 〈inria-00287048〉

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

257