MILEPOST GCC: machine learning based research compiler

Abstract : Tuning hardwired compiler optimizations for rapidly evolving hardware makes porting an optimizing compiler for each new platform extremely challenging. Our radical approach is to develop a modular, extensible, self-optimizing compiler that automatically learns the best optimization heuristics based on the behavior of the platform. In this paper we describe MILEPOST GCC, a machine-learning-based compiler that automatically adjusts its optimization heuristics to improve the execution time, code size, or compilation time of specific programs on different architectures. Our preliminary experimental results show that it is possible to considerably reduce execution time of the MiBench benchmark suite on a range of platforms entirely automatically.
Liste complète des métadonnées

https://hal.inria.fr/inria-00294704
Contributeur : Grigori Fursin <>
Soumis le : jeudi 10 juillet 2008 - 11:56:22
Dernière modification le : jeudi 9 février 2017 - 15:53:38
Document(s) archivé(s) le : lundi 1 octobre 2012 - 11:00:23

Fichier

fmtp2008.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00294704, version 1

Collections

Citation

Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, et al.. MILEPOST GCC: machine learning based research compiler. GCC Summit, Jun 2008, Ottawa, Canada. 2008. <inria-00294704>

Partager

Métriques

Consultations de
la notice

806

Téléchargements du document

361