Efficient greedy learning of Gaussian mixture models

Abstract : This article concerns the greedy learning of gaussian mixtures. In the greedy approach, mixture components are inserted into the mixture one after the other. We propose a heuristic for searching for the optimal component to insert. In a randomized manner, a set of candidate new components is generated. For each of these candidates, we find the locally optimal new component and insert it into the existing mixture. The resulting algorithm resolves the sensitivity to initialization of state-of-the-art methods, like expectation maximization, and has running time linear in the number of data points and quadratic in the (final) number of mixture components. Due to its greedy nature, the algorithm can be particularly useful when the optimal number of mixture components is unknown. Experimental results comparing the proposed algorithm to other methods on density estimation and texture segmentation are provided.
Type de document :
Article dans une revue
Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2003, 15 (2), pp.469-485. 〈http://www.mitpressjournals.org/doi/abs/10.1162/089976603762553004〉. 〈10.1162/089976603762553004〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00321487
Contributeur : Jakob Verbeek <>
Soumis le : mercredi 16 février 2011 - 16:15:42
Dernière modification le : lundi 25 septembre 2017 - 10:08:04
Document(s) archivé(s) le : mardi 17 mai 2011 - 02:28:00

Fichiers

verbeek03neco.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jakob Verbeek, Nikos Vlassis, Ben Krose. Efficient greedy learning of Gaussian mixture models. Neural Computation, Massachusetts Institute of Technology Press (MIT Press), 2003, 15 (2), pp.469-485. 〈http://www.mitpressjournals.org/doi/abs/10.1162/089976603762553004〉. 〈10.1162/089976603762553004〉. 〈inria-00321487〉

Partager

Métriques

Consultations de la notice

378

Téléchargements de fichiers

1428