Efficient greedy learning of Gaussian mixtures

Abstract : We present a deterministic greedy method to learn a mixture of Gaussians. The key element is that we build-up the mixture component-wise: we start with one component and then add new components one at a time and update the mixtures in between the component insertions. Instead of solving directly a optimization problem involving the parameters of all components, we replace the problem by a sequence of component allocation problems involving only the parameters of the new component. Included are experimental results obtained from extensive tests on artificially generated data sets. The new learning method is compared with the standard EM with random initializations approach as well as to other existing approaches to learning Gaussian mixtures.
Type de document :
Communication dans un congrès
The 13th Belgian-Dutch Conference on Artificial Intelligence (BNAIC'01), Oct 2001, Amsterdam, Netherlands. pp.251--258, 2001
Liste complète des métadonnées


https://hal.inria.fr/inria-00321510
Contributeur : Jakob Verbeek <>
Soumis le : mercredi 16 février 2011 - 17:05:52
Dernière modification le : lundi 25 septembre 2017 - 10:08:04
Document(s) archivé(s) le : mardi 17 mai 2011 - 02:36:15

Fichiers

verbeek01bnaic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00321510, version 1

Citation

Jakob Verbeek, Nikos Vlassis, Ben Krose. Efficient greedy learning of Gaussian mixtures. The 13th Belgian-Dutch Conference on Artificial Intelligence (BNAIC'01), Oct 2001, Amsterdam, Netherlands. pp.251--258, 2001. 〈inria-00321510〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

185