A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes

Abstract : We present a high-order cell-centered Lagrangian scheme for solving the two-dimensional gas dynamics equations on unstructured meshes. A node-based discretization of the numerical fluxes for the physical conservation laws allows to derive a scheme that is compatible with the geometric conservation law (GCL). Fluxes are computed using a nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The first-order scheme is conservative for momentum and total energy, and satisfies a local entropy inequality in its semi-discrete form. The two-dimensional high-order extension is constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess this new scheme. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new scheme.
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00322369
Contributeur : Pierre-Henri Maire <>
Soumis le : mercredi 17 septembre 2008 - 15:05:26
Dernière modification le : jeudi 26 juillet 2018 - 12:09:31
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:29:33

Fichier

article_hydgrp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

CELIA | CEA | DAM

Citation

Pierre-Henri Maire. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. Journal of Computational Physics, Elsevier, 2009, pp.2391-2425. 〈10.1016/j.jcp.2008.12.007〉. 〈inria-00322369〉

Partager

Métriques

Consultations de la notice

147

Téléchargements de fichiers

257