Hybrid Statistical-Structural On-line Chinese Character Recognition with Fuzzy Inference System

Adrien Delaye 1 Sébastien Macé 1 Eric Anquetil 1
1 IMADOC - Interprétation et Reconnaissance d’Images et de Documents
UR1 - Université de Rennes 1, INSA Rennes - Institut National des Sciences Appliquées - Rennes, CNRS - Centre National de la Recherche Scientifique : UMR6074
Abstract : In this paper, we propose an original hybrid statistical-structural method for on-line Chinese character recognition. We model characters thanks to fuzzy inference rules combining morphological and contextual information formalized in a homogeneous way. For that purpose, we define a set of primitives modeling all the stroke classes that can be found in handwritten Chinese characters. Thus, each analyzed stroke can be classified as primitive without any segmentation process. Inference rules are built from the coupling of a priori information about the primitives constituting the characters and automatic modeling of their relative positioning. The fuzzy inference system aggregates these rules for decision making. First experiments validate this method with a recognition rate of 97.5% on a subset of Chinese characters.
Type de document :
Communication dans un congrès
International Conference on Pattern Recognition, Dec 2008, Tampa, Florida, United States. 2008
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00322952
Contributeur : Adrien Delaye <>
Soumis le : vendredi 19 septembre 2008 - 10:44:09
Dernière modification le : mercredi 16 mai 2018 - 11:23:01
Document(s) archivé(s) le : jeudi 3 juin 2010 - 21:48:05

Fichier

ICPR_submitted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00322952, version 1

Citation

Adrien Delaye, Sébastien Macé, Eric Anquetil. Hybrid Statistical-Structural On-line Chinese Character Recognition with Fuzzy Inference System. International Conference on Pattern Recognition, Dec 2008, Tampa, Florida, United States. 2008. 〈inria-00322952〉

Partager

Métriques

Consultations de la notice

118

Téléchargements de fichiers

133