An adapted Lucas-Kanade's method for optical flow estimation in catadioptric images

Abstract : The optical flow estimation is one of important problem in computer vision. Differential techniques were used successfully to compute the optical flow in perspective images. Lucas-Kanade is one of the most popular differential method that solve the problem of optical flow by given constrain that motion is locally constant. Even if this method works well for the perspective images, this supposition is less appropriate in the omnidirectional images due to its distortion. In this paper, we propose to use new constraint based on motion model defined for paracatadioptric images. This new constraint will be combined with an adapted neighborhood windows witch are adequate to catadioptric images. We will show in this work that these two hypothesis allows to compute efficiently optical flow from omnidirectional image sequences.
Type de document :
Communication dans un congrès
The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras - OMNIVIS, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00325390
Contributeur : Peter Sturm <>
Soumis le : lundi 29 septembre 2008 - 10:56:02
Dernière modification le : jeudi 26 avril 2018 - 22:28:02
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:40:22

Fichier

A33CR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00325390, version 1

Collections

Citation

A. Radgui, Cedric Demonceaux, El Mustapha Mouaddib, D. Aboutajdine, M. Rziza. An adapted Lucas-Kanade's method for optical flow estimation in catadioptric images. The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras - OMNIVIS, Oct 2008, Marseille, France. 2008. 〈inria-00325390〉

Partager

Métriques

Consultations de la notice

267

Téléchargements de fichiers

676