Learning Moving Cast Shadows for Foreground Detection

Abstract : We present a new algorithm for detecting foreground and moving shadows in surveillance videos. For each pixel, we use the Gaussian Mixture Model (GMM) to learn the behavior of cast shadows on background surfaces. The pixelbased model has the advantages over regional or global model for their adaptability to local lighting conditions, particularly for scenes under complex illumination conditions. However, it would take a long time for convergence if motion is rare on that pixel. We hence build a global shadow model that uses global-level information to overcome this drawback. The local shadow models are updated through confidence-rated GMM learning, in which the learning rate depends on the confidence predicted by the global shadow model. For foreground modeling, we use a nonparametric density estimation method to model the complex characteristics of the spatial and color information. Finally, the background, shadow, and foreground models are built into a Markov random field energy function that can be efficiently minimized by the graph cut algorithm. Experimental results on various scene types demonstrate the effectiveness of the proposed method.
Type de document :
Communication dans un congrès
The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

Contributeur : Peter Sturm <>
Soumis le : lundi 29 septembre 2008 - 18:09:24
Dernière modification le : mercredi 24 janvier 2018 - 10:46:02
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:41:23


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00325645, version 1



Jia-Bin Huang, Chu-Song Chen. Learning Moving Cast Shadows for Foreground Detection. The Eighth International Workshop on Visual Surveillance - VS2008, Oct 2008, Marseille, France. 2008. 〈inria-00325645〉



Consultations de la notice


Téléchargements de fichiers