Spatio-temporal Feature Recogntion using Randomised Ferns

Abstract : In this paper we present a generic classifier for detecting spatio-temporal feature points within video. The premise being that given a feature detector, we can learn a classifier that duplicates its functionality which is both accurate and computationally efficient. This means that feature point detection can be achieved independent of the complexity of the original interest point formulation.We extend the naive Bayesian classifier of Ferns to the spatio-temporal domain and learn classifiers that duplicate the functionality of common spatio-temporal interest point detectors. Results demonstrate accurate reproduction of results with a classifier that can be applied exhaustively to video at frame-rate, without optimisation, in a scanning window approach.
Type de document :
Communication dans un congrès
The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00326716
Contributeur : Peter Sturm <>
Soumis le : dimanche 5 octobre 2008 - 12:33:39
Dernière modification le : lundi 6 octobre 2008 - 09:42:56
Document(s) archivé(s) le : lundi 8 octobre 2012 - 13:56:26

Fichier

mlvma08_submission_22.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00326716, version 1

Collections

Citation

Olusegun Oshin, Andrew Gilbert, John Illingworth, Richard Bowden. Spatio-temporal Feature Recogntion using Randomised Ferns. The 1st International Workshop on Machine Learning for Vision-based Motion Analysis - MLVMA'08, Oct 2008, Marseille, France. 2008. 〈inria-00326716〉

Partager

Métriques

Consultations de la notice

95

Téléchargements de fichiers

81